Tetrahedron Letters No.30, pp. 3513-3517, 1966. Pergamon Press Ltd, Printed in Great Britain.

SLOW ROTATION AROUSD THE BENZENE-TO-GARBOHYL BOMD IN A BENZAMIDR*

T. H. Siddall, III
R. H. Garner
Savannah River Laboratory
Department of Chemistry
E. I. du Pont de Nemours \& Co. Aiken, South Carolina
University of Alabama University, Alabama

(Received 17 March 1966; in revised form 24 May 1966)

Rotation around the carbonyl-to-nitrogen bonds in many amides (1,2) is slow on the proton magnetic resonance (PMR) time scale. Recentiy, slow rotation around the benzene-to-nitrogen bond in o-substituted aryl amides was observed in PMR studies in this Laboratory $(3,4,5)$. The purpose of this letter is ta report evidance for slow rotation around the benzene-to-carbonyl bond in the di-0substituted benzamide,

Compound I was prepared by adding a mixture of the amine,

[^0]to a solution of di-o-methoxybenzoyl chloride in dichloromethane. After standing overnight, the product solution was washed sequentially with water, a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and water again; then the dichloromethane was removed under vacuum. The product was purifíled by molecular distillation at $170^{\circ} \mathrm{C}$ and $<1 \times 10^{-3} \mathrm{~mm} \mathrm{Hg}$ and purified further by crystallizing the uranyl nitrate adduct from a mixture of methylcyclohexane and dichloromethane. The adduct: was redissolved in dichloromethane, the uranyl nitrate was stripped away from the amide with water and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ washes, and the d:Lchloromethane was removed under vacuum. PNR apectrograms taken after molecular distillation only and after distillation plus further purification by adduct crystallization were identical. Calculated for I: $C=72.7, H=7.63, N=4.47$; found: $\mathrm{C}=7.1 .9, \mathrm{H}=7.65, \mathrm{~N}=4.46$.

Tigure 1 is the PMR spectrum of I, as a 15 volume \% solution in $C_{C D C l}^{3}$. The general appearance of this spectrum is consistent with the coexistence of two amide isomers due to slow cotation around the carbonyl-to-nitrogen (amide) bond, with one amide isomer being slightly more abundant than the other. However, instead of the two signals that would be expected for the methoxy protons (one for each isomer), two pairs of signals are observed. An acetone solution of the uranyl nitrate adduct of I gives qualitatively the same speotrum, including the four methoxy signals.

In t-butylbenzene as the solvent at $60^{\circ} \mathrm{C}$, the same general features are observed as in CDCl_{3} at $40^{\circ} \mathrm{C}$. However, as the temperature is raised to $100^{\circ} \mathrm{C}$, all signals broaden (as would be expected as the rate of rotation round the amide bond

PMR SPECTROGRAM OF

FIG.I
is increased) and coalescence of signals from the separate amide isomers is approached. At $130^{\circ} \mathrm{C}$ the methoxy signals have coalesced into a reasonably sharp doublet and even ring slightly on the 500 cps scale. At $145^{\circ} \mathrm{C}$ the methoxy signals are a poorly resolved doublet with no ringing, but at 165° have become a sharp singlet. Apparently these signals go through two discrete stages of coalescence - from a quartet to a doublet and finally to a singlet.

It seems likely that the barrier to rotation around the benzene-to-carbonyl bond is $20 \mathrm{kilocalories/mole}$ or greater. On the basis of studies with related amides we believe that the first stage of coalescence should be assigned to the onset of rapid rotation around the amide bond. This leaves the second stage of coalescence to the onset of rapid rotation around the benzene-tocarbonyl bond. By comparison with the coalescence temperatures for other amides and their kinetic quantities for rotation ${ }^{(2)}$, the barrier to rotation around the amide bond in I must be about 20 kilocalories/mole. Thus the barrier to rotation around the benzene to carbonyl bond may be greater than $20 \mathrm{kilocalories/mole}$. Even if our assignment is the reverse of the correct one, the bari is at least $20 \mathrm{kilocalories/mole}$.

A reasonable choice of ground state for the molecules of I (one amide isomer) is shown below.

There is a loss of electron delocalization energy because the ranzene ring is not in the plane of the carbonyl group. However, this provides steric considerations favorable to preserving the larger delocalization energy of the amide framework.

REFERENCES

1. H. S. Gutowsky and C. H. Holm, J. Chem. Phys., 25, 1228 (1956).
2. M. T. Rogers and J. C. Woodbrey, J. Phys. Chem., 66, 540 (1962).
3. T. H. Siddall, III and C. A. Prohaska, Nature, 208, 582 (1965).
4. T. H. Siddall, III and C. A. Prohaska, Accepted for Publication in J. Am. Chem. Soc.
5. T. H. SIddall, III, Tetrahedron Letters, No. 50, 45.15 (1965).

[^0]: *The information contained in this article was developed during the course of work under contract AT(07-2)-1 with the U. . . Atomic Energy Comaission.

